
COMP 520 - Compilers

Lecture 06 – PA2 Intro

1

PA1 Due 1/31 11:59pm

•Make sure to use office hours resources

2
COMP 520: Compilers – S. Ali

Quick Recap on LL(1)

•Consider the following: for every CFG rule, you do not
know the sequence corresponding to that rule, but
you DO know that the starters are disjoint.

• Is it LL(1)?

3
COMP 520: Compilers – S. Ali

Quick Recap on LL(1)

•Consider the following: for every CFG rule, you do not
know the sequence corresponding to that rule, but
you DO know that the starters are disjoint.

• E.g., A ::= ?, B ::= ?, C ::= ?, and
∀𝑋,𝑌∈ 𝐴,𝐵,𝐶 Starters 𝑋 ∩ Starters 𝑌 = ∅

∨ (𝑋 = 𝑌)

• Is it LL(1)?

4
COMP 520: Compilers – S. Ali

Decisions.. decisions..

• The CFG rules are a decision, which is why it is
important to know what terminals start a rule

•But inside the sequence, you also have decisions

•A ::= ba*Bb

•B ::= ac | 𝜀

• Is this LL(1)?

5
COMP 520: Compilers – S. Ali

Decisions.. decisions.. (2)

•A ::= ba*Bb

•B ::= ac | 𝜀

• Is this LL(1)?

• Formally, let’s check:

Predict(a) = Starters(a) = {a}

Predict(Bb) = Starters(Bb)⊕Followers(A)

= Starters(B)⊕Starters(b)

6
COMP 520: Compilers – S. Ali

Cool property, where did
Followers(A) disappear off to?
Hint: Starters(Bb) not nullable.

Decisions.. decisions.. (3)

• A ::= ba*Bb

• B ::= ac | 𝜀

• Is this LL(1)?

• Formally, let’s check:

Predict(a) = Starters(a) = {a}

Predict(Bb) = Starters(Bb)⊕Followers(A)

= Starters(B)⊕Starters(b)

= {a,𝜀} ⊕ {b} = {a,b}

7
COMP 520: Compilers – S. Ali

Not LL(1)

Sequences have decisions in them

• If we do not know where we are in the sequence
when only looking at the current Token, then how can
we claim we are LL(1)?

•A ::= ba*Bb

•B ::= ac | 𝜀

8
COMP 520: Compilers – S. Ali

Followers Example

• Consider:

S ::= A$

A ::= BDA | a

B ::= D | b

D ::= d | 𝜀

First step: FL0(A) = (ST($) ∪ ST(𝜀)) \ {𝜀} = {$}

From the rule: 𝐹𝐿0 𝐴 = 𝐶⇒𝛼𝐴𝛽ڂ Starters 𝛽 \ {𝜀}

We see A is in the first and second rule.

9
COMP 520: Compilers – S. Ali

Followers Example

First step: FL0(A) = (ST($) ∪ ST(𝜀)) \ {𝜀} = {$}

From the rule: 𝐹𝐿0 𝐴 = 𝐶⇒𝛼𝐴𝛽ڂ Starters 𝛽 \ {𝜀}

We see A is in the first and second rule.

Second iteration: FL1(A) = FL0(A) ∪ FL0(A) = {$} ∪ {$} = {$}

From the rule: 𝐹𝐿𝑖+1 𝐴 = 𝐹𝐿𝑖 𝐴 ∪⋯∪ 𝐹𝐿𝑖 𝐶
• Where 𝐶 ⇒ 𝛼𝐴𝛽 and Nullable(𝛽)

We find every rule C where A is to the left of Nullable sequences.

This would be Rule 2, because A is to the left of nothing.

10
COMP 520: Compilers – S. Ali

S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀

Followers Example

First step: FL0(A) = (ST($) ∪ ST(𝜀)) \ {𝜀} = {$}

From the rule: 𝐹𝐿0 𝐴 = 𝐶⇒𝛼𝐴𝛽ڂ Starters 𝛽 \ {𝜀}

We see A is in the first and second rule.

Second iteration: FL1(A) = FL0(A) ∪ FL0(A) = {$} ∪ {$} = {$}

From the rule: 𝐹𝐿𝑖+1 𝐴 = 𝐹𝐿𝑖 𝐴 ∪⋯∪ 𝐹𝐿𝑖 𝐶
• Where 𝐶 ⇒ 𝛼𝐴𝛽 and Nullable(𝛽)

We find every rule C where A is to the left of Nullable sequences.

This would be Rule 2, because A is to the left of nothing.

11
COMP 520: Compilers – S. Ali

S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀

Final Followers Rule

• Followers(A) = {𝑡 | 𝑆 ⇒∗ 𝛼𝐴𝑡𝛽} ڂቊ
{𝜀}

{}
if 𝑆 ⇒∗ 𝛼𝐴
otherwise

• Don’t forget to union with {𝜀} when 𝑆 ⇒∗ 𝛼𝐴

12
COMP 520: Compilers – S. Ali

Fixed Point

• Although the previous example was simple, some problems will
require you to iterate until you hit a fixed point.

• Let’s look at the Nullable inductive definitions

13
COMP 520: Compilers – S. Ali

Nullable Example

N0(S) = N(A$) = N(A) ∧ N($) = N(A) ∧ false = false

N0(A) = (N(B) ∧ N(D) ∧ N(A)) ∨ N(a) = N(B) ∧ N(D) ∧ N(A)

N0(B) = N(D) ∨ N(b) = N(D) ∨ false = N(D)

N0(D) = N(d) ∨ N(𝜀) = false ∨ true = true

14
COMP 520: Compilers – S. Ali

S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀

𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F

A ?

B ?

D T

Nullable Example (2)

N0(S) = N(A$) = N(A) ∧ N($) = N(A) ∧ false = false

N0(A) = (N(B) ∧ N(D) ∧ N(A)) ∨ N(a) = N(B) ∧ N(D) ∧ N(A)

N0(B) = N(D) ∨ N(b) = N(D) ∨ false = N(D)

N0(D) = N(d) ∨ N(𝜀) = false ∨ true = true

N1(B) = N0(D) = true

N1(A) = true ∧ true ∧ N(A) = N(A)

15
COMP 520: Compilers – S. Ali

S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀

𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F

A ? ?

B ? T

D T T

If you see recursion…

• Ni A = Ni−1(A)

• A ::= BDA | a

• Try to rewrite this without recursion
if possible, otherwise continue iterating

16
COMP 520: Compilers – S. Ali

𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F

A ? ?

B ? T

D T T

If you see recursion… (2)

• Ni A = Ni−1(A)

• A ::= BDA | a

• Try to rewrite this without recursion

• A ::= (BD)*a

• N(A) = true ∧ N(a) = false

17
COMP 520: Compilers – S. Ali

𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F F

A ? ? F

B ? T T

D T T T

Nullable Example (3)

18
COMP 520: Compilers – S. Ali

𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F F F

A ? ? F F

B ? T T T

D T T T T

Fixed Point
at 𝐍𝟐 → 𝐍𝟑

From your feedback:

• I won’t ask for Predict sets in midterms/finals, but
Nullable, Starters, and Followers is fair game

• Instead, Predict can be practiced in the first WA
(to be released on Thursday)

19
COMP 520: Compilers – S. Ali

PA2 – Intro
ASTs and Operator Precedence

20
COMP 520: Compilers – S. Ali

Recap of PA1
•Getting started may be difficult

• Syntax Analysis can be somewhat difficult, even for
miniJava (imagine C++)

• It still feels like we are far from having a fully
functional compiler … right?

21
COMP 520: Compilers – S. Ali

PA1
• You will be happy to know, you actually accomplished

quite a bit of the compiler in PA1

•PA2 can be described as two things:

1. “Package syntax into data structures”

2. “Operator precedence”

22
COMP 520: Compilers – S. Ali

PA2 Expectations

• Learn about Abstract Syntax Trees
•Package the miniJava syntax into AST data structures
•Return one AST that encapsulates the entire program

being compiled

•Data must be organized in a consistent manner, e.g.,
in a “Method List” data structure, methods appear in
order as they appear in the source code

23
COMP 520: Compilers – S. Ali

PA2 Expectations

• Learn about Abstract Syntax Trees
•Package the miniJava syntax into AST data structures
•Return one AST that encapsulates the entire program

being compiled

•Data must be organized in a consistent manner, e.g.,
in a “Method List” data structure, methods appear in
order as they appear in the source code

24
COMP 520: Compilers – S. Ali

Abstract Syntax Trees

25
COMP 520: Compilers – S. Ali

Abstract Syntax Trees

• Recall the graph exercise for the CFG in Lec02, we will try to build a
graph like that except for the input source file

• Only syntactically valid programs have an AST

• Building an AST is easier with an EBNF grammar rather than the
original recursive CFG,

Where easier in this context just means less to write down, although
some problems may also arise when generating the AST grammar.

26
COMP 520: Compilers – S. Ali

Abstract Syntax Trees

• Recall the graph exercise for the CFG in Lec02, we will try to build a
graph like that except for the input source file

• Only syntactically valid programs have an AST

• Building an AST is easier with an EBNF grammar rather than the
original recursive CFG,

Where easier in this context just means less to write down, although
some problems may also arise when generating the AST grammar.

27
COMP 520: Compilers – S. Ali

AST Example

•Consider the CFG:

• S ::= E $

• E ::= E Op T | T

• T ::= (E) | num

•Op ::= + | *

28
COMP 520: Compilers – S. Ali

What is the EBNF of this?

CFG -> EBNF

CFG

• S ::= E $

• E ::= E Op T | T

• T ::= (E) | num

•Op ::= + | *

EBNF

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

•Op ::= + | *

29
COMP 520: Compilers – S. Ali

EBNF AST

•Now that we have the grammar in the much easier
EBNF, we can construct an AST.

•An AST is a graph that describes the structure of your
input source code.

30
COMP 520: Compilers – S. Ali

AST Construction
Let’s construct the syntax tree for 2 + (3 * 4) $

Apply: S ::= E $, Left: E=2 + (3 * 4), Right: $

31
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

AST Construction
Let’s construct the syntax tree for 2 + (3 * 4) $

Apply: E ::= T Op T, Left: E=2, Op=+, Right: T=(3 * 4)

32
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp +

AST Construction
Let’s construct the syntax tree for 2 + (3 * 4) $

Apply: T ::= num

33
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp +

2

AST Construction
Let’s construct the syntax tree for 2 + (3 * 4) $
Apply: T ::= (E), Left: (, Middle: E=3*4, Right:)

34
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp +

()E2

AST Construction
Let’s construct the syntax tree for 2 + (3 * 4) $

Apply: E ::= T Op T, Left: T=3, Middle: Op=*, Right: T=4

35
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp +

()E

T TOp *

2

AST Construction
Let’s construct the syntax tree for 2 + (3 * 4) $

Apply: T ::= num

36
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp +

()E

T TOp *

3 4

2

What if we used the CFG?

37
COMP 520: Compilers – S. Ali

Without EBNF

38
COMP 520: Compilers – S. Ali

S ::= E $
E ::= E Op T | T
T ::= (E) | num
Op ::= + | *

Let’s construct the syntax tree for 2 + (3 * 4) $
Tree is lengthier, and can get quite messy

S

E $

E TOp +

()E

E TOp *

3
4

T

2

T

A quick look at math in
expressions
More on this in Thursday’s lecture (Lec07)

39
COMP 520: Compilers – S. Ali

Any problems with this AST?
Input: 20 + 5 * 100 $

40
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp *

T TOp + 100

20 5

Any problems with this AST?
Input: 20 + 5 * 100 $

41
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp *

T TOp + 100

20 5

Emulate Execution
20 + 5 = 25

Any problems with this AST?
Input: 20 + 5 * 100 $

42
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

T TOp *

25 100
Emulate Execution
20 + 5 = 25
25 * 100 = 2500

Any problems with this AST?
Input: 20 + 5 * 100 $

43
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= (E) | num
Op ::= + | *

2500

Emulate Execution
20 + 5 = 25
25 * 100 = 2500

But that isn’t correct!

•20 + 5 * 100 is not 2500

•Precedence rules must be enforced for the correct
AST to be generated.

• This can be tricky, but we can modify our grammar to
make this quite easy (next lecture)

44
COMP 520: Compilers – S. Ali

Abstractness of ASTs

45
COMP 520: Compilers – S. Ali

What types of Expressions do we have?

• Consider: UnaryExpr, BinaryExpr, CallExpr, IxExpr, RefExpr, LiteralExpr,
NewArrayExpr, NewObjectExpr

• All of these are an “Expression”

• So this rule: Expression Op Expression ≡ BinaryExpr

• But each of those Expressions can be any other type of Expression.

46
COMP 520: Compilers – S. Ali

What types of Expressions do we have?

• Consider: UnaryExpr, BinaryExpr, CallExpr, IxExpr, RefExpr, LiteralExpr,
NewArrayExpr, NewObjectExpr

• So this rule: Expression Op Expression ≡ BinaryExpr

• Is this a syntactically valid expression?

-3 + new A()

47
COMP 520: Compilers – S. Ali

What types of Expressions do we have?

• Consider: UnaryExpr, BinaryExpr, CallExpr, IxExpr, RefExpr, LiteralExpr,
NewArrayExpr, NewObjectExpr

• So this rule: Expression Op Expression ≡ BinaryExpr

• Is this a syntactically valid expression?

-3 + new A()

• Yes, but the types do not match, however for PA2, perfectly fine

48
COMP 520: Compilers – S. Ali

What types of Expressions do we have?

• Is this a syntactically valid statement?

boolean A = -3 + new A();

49
COMP 520: Compilers – S. Ali

What types of Expressions do we have?

• Is this a syntactically valid statement?

boolean A = -3 + new A();

• Yes, but the types do not match, and A makes no sense in its context.

• Still perfectly fine for PA2

50
COMP 520: Compilers – S. Ali

Definitions for ASTs
• Consider WhileStmt ::= while (Expression) Statement

• We want to capture this in a data structure, so we create the class
WhileStmt which extends Statement

51
COMP 520: Compilers – S. Ali

Definitions for ASTs
• Consider WhileStmt ::= while (Expression) Statement

• We want to capture this in a data structure, so we create the class
WhileStmt which extends Statement

if(currentToken.getType() == TokenType.While) {

• accept(while); accept(‘(‘);

• Expression e = parseExpression();

• accept(‘)’);

• Statement s = parseStatement();

52
COMP 520: Compilers – S. Ali

Definitions for ASTs
• Consider WhileStmt ::= while (Expression) Statement

• We want to capture this in a data structure, so we create the class
WhileStmt which extends Statement

if(currentToken.getType() == TokenType.While) {

• accept(while); accept(‘(‘);

• Expression e = parseExpression();

• accept(‘)’);

• Statement s = parseStatement();

• return new WhileStmt(e, s);

53
COMP 520: Compilers – S. Ali

AST Implementations

• The class definitions for ASTs are quite mundane and
likely what you expect them to be.

• E.g., TypeDenoter is the abstract type for “Type” and
parseType can return ArrayType, BaseType,
ClassType, each of which extend TypeDenoter

54
COMP 520: Compilers – S. Ali

AST Implementations

• The class definitions for ASTs are quite mundane and
likely what you expect them to be.
• E.g., TypeDenoter is the abstract type for “Type” and
parseType can return ArrayType, BaseType,
ClassType, each of which extend TypeDenoter

•As such, all ASTs are already implemented and
available on the course website.

55
COMP 520: Compilers – S. Ali

PA2 Restrictions

• You must use the AST implementations available on
the course website.

• The autograder checks to make sure your AST is
constructed correctly and in the proper order.

56
COMP 520: Compilers – S. Ali

Quick note on AST Grammars

57
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E

• E ::= T (Op T)*

• T ::= (E) | num

• We want to parse Expressions,
so create a rule:

• S ::= E

• For simplicity, add the $ terminal

• S ::= E $
• (See augmented grammars, worth

a google or check the textbook)

58
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

• First let’s denote “E” as an
“Expression” as that is the
symbol in our start state

• What are the types of
expressions we can encounter?

59
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

• First let’s denote “E” as an
“Expression” as that is the
symbol in our start state

• What are the types of
expressions we can encounter?

• Locate all instances of E and any
non-terminal it encompasses

60
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Locate all instances of E and any
non-terminal it encompasses

• T, and T Op T

Non-terminal T, so we also have

• (E) and num

61
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Looks like we have three types of
expressions:

Just “T”, so:

T ቊ
(E)
num

T Op T

62
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

T ቊ
(E)
num

T Op T

(E) is just an Expression that is
later resolved, so this isn’t unique.

63
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Thus, we have two types of
expressions:

T Op T

num

64
COMP 520: Compilers – S. Ali

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Thus, we have two types of
expressions:

Define them!

65
COMP 520: Compilers – S. Ali

T Op T BinExpr

num LiteralExpr

AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Generate AST Grammars:

• Expr ::= Expr Op Expr (BinExpr)

| num (NumExpr)

Each option has its own AST
definition, where options have an “is
a” relationship with the parent type.

“NumExpr” is a “Expr”

66
COMP 520: Compilers – S. Ali

AST creation is necessary but…

• Generating the theory for what should be in the AST
grammars? Exciting, even if it is just “find the options.”

• Writing the code for every single AST object with the proper
“is a” relationship? Well…

67
COMP 520: Compilers – S. Ali

AST creation is necessary but…

• Generating the theory for what should be in the AST
grammars? Exciting, even if it is just “find the options.”

• Writing the code for every single AST object with the proper
“is a” relationship? Well…

• We’re just going to give you the code for AST objects

68
COMP 520: Compilers – S. Ali

AST Layout from PA2 Instructions

69
COMP 520: Compilers – S. Ali

Note: What is provided on the right
is subject to clarification updates.

Always check Piazza for updates,
and grab the latest PA2 instructions
from the course website.

PA2 Overview

70
COMP 520: Compilers – S. Ali

Step 1: Import

•Create a package called miniJava.AbstractSyntaxTrees

•Download the zip file on the course website, and
import all source files into the package

71
COMP 520: Compilers – S. Ali

Step 2: Study AST Implementations

72
COMP 520: Compilers – S. Ali

Step 2: AST Implementations

•Package AST has an add method, and accepts
ClassDecl to build a list of classes.

• Your parse method should return the Package AST.

73
COMP 520: Compilers – S. Ali

Step 3: SourcePosition object

• See PA2 instructions for more details

• When debugging your code, you can enable source
positions, but if you are not tracking source positions for
your Tokens, then pass null whenever an AST requires a
SourcePosition object.

• If you already are tracking positions, then package that
data into the SourcePosition object as outlined in the
instructions.

74
COMP 520: Compilers – S. Ali

SourcePosition for ASTs

• Syntax doesn’t occur at a single location, so what is a good
way to implement SourcePosition?

• Up to you, but we recommend SourcePosition being
overloaded with two constructors, one with just a line/col
number, and another with a StartToken and EndToken, and
the toString output would show the range over which lines
the current syntax spans.

• Recall: This is a PA5 extra credit item

75
COMP 520: Compilers – S. Ali

PA2 Overview

• Go through each of your parse methods and return the AST
associated with that syntax.

• For example, parseExpression returns the generic Expression AST, but
if the current token is “true|false”, then it returns:

new LiteralExpr(new BooleanLiteral(theToken), theToken.position)

• Where LiteralExpr “is an” Expression

76
COMP 520: Compilers – S. Ali

Compiler.java Changes

•As before, output “Error” on its own line (println) if
there is a syntax error, then any meaningful error
messages you like

• If there are no errors, then…

77
COMP 520: Compilers – S. Ali

When no errors…

• If there are no errors, ensure there is no other
output other than the one generated from
display.showTree

78
COMP 520: Compilers – S. Ali

Debugging

• If your compiler is not passing a test, download “Gradescope
Tests” on the course website for PA2, then find the
associated test.

• Note: “pass119.java” is the input source file, and
“pass119.java.out” is the AST display that should be
generated.

• If there is an error, find the difference in your display versus
the .out file

79
COMP 520: Compilers – S. Ali

Debugging (2)

• If you need to know where in the source code something
went wrong and you have implemented SourcePosition,
then go to ASTDisplay.java and set the “showPosition”
variable to true.

• NOTE: Only submit your assignment with showPosition set to
false, otherwise the autograder will be unable to check your
Compiler’s output for valid input files.

80
COMP 520: Compilers – S. Ali

Example Output

class id {}

81
COMP 520: Compilers – S. Ali

Example Output

82
COMP 520: Compilers – S. Ali

Parse Example (assume no precedence)

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Can anyone give me the parse
method for parseS() if it was PA1?

Then, we will add ASTs!

83
COMP 520: Compilers – S. Ali

Parse Example

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Generate AST Grammars:

• Expr ::= Expr Op Expr (BinExpr)

| num (NumExpr)

84
COMP 520: Compilers – S. Ali

Parse Example

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Generate AST Grammars:

• Expr ::= Expr Op Expr (BinExpr)

| num (NumExpr)

85
COMP 520: Compilers – S. Ali

Parse Example

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Generate AST Grammars:

• Expr ::= Expr Op Expr (BinExpr)

| num (NumExpr)

86
COMP 520: Compilers – S. Ali

Parse Example

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= (E) | num

Generate AST Grammars:

• Expr ::= Expr Op Expr (BinExpr)

| num (NumExpr)

87
COMP 520: Compilers – S. Ali

Recommendations

•Work on operator precedence last, because
everything else in the Parser is only slightly modified

• (Your implementation may require larger
modifications, but hopefully nothing crazy)

•We will make operator precedence very easy in
Thursday’s lecture

88
COMP 520: Compilers – S. Ali

End

89

90
COMP 520: Compilers – S. Ali

91
COMP 520: Compilers – S. Ali

92
COMP 520: Compilers – S. Ali

93
COMP 520: Compilers – S. Ali

	Slide 1: COMP 520 - Compilers
	Slide 2: PA1 Due 1/31 11:59pm
	Slide 3: Quick Recap on LL(1)
	Slide 4: Quick Recap on LL(1)
	Slide 5: Decisions.. decisions..
	Slide 6: Decisions.. decisions.. (2)
	Slide 7: Decisions.. decisions.. (3)
	Slide 8: Sequences have decisions in them
	Slide 9: Followers Example
	Slide 10: Followers Example
	Slide 11: Followers Example
	Slide 12: Final Followers Rule
	Slide 13: Fixed Point
	Slide 14: Nullable Example
	Slide 15: Nullable Example (2)
	Slide 16: If you see recursion…
	Slide 17: If you see recursion… (2)
	Slide 18: Nullable Example (3)
	Slide 19: From your feedback:
	Slide 20: PA2 – Intro
	Slide 21: Recap of PA1
	Slide 22: PA1
	Slide 23: PA2 Expectations
	Slide 24: PA2 Expectations
	Slide 25: Abstract Syntax Trees
	Slide 26: Abstract Syntax Trees
	Slide 27: Abstract Syntax Trees
	Slide 28: AST Example
	Slide 29: CFG -> EBNF
	Slide 30: EBNF AST
	Slide 31: AST Construction
	Slide 32: AST Construction
	Slide 33: AST Construction
	Slide 34: AST Construction
	Slide 35: AST Construction
	Slide 36: AST Construction
	Slide 37: What if we used the CFG?
	Slide 38: Without EBNF
	Slide 39: A quick look at math in expressions
	Slide 40: Any problems with this AST?
	Slide 41: Any problems with this AST?
	Slide 42: Any problems with this AST?
	Slide 43: Any problems with this AST?
	Slide 44: But that isn’t correct!
	Slide 45: Abstractness of ASTs
	Slide 46: What types of Expressions do we have?
	Slide 47: What types of Expressions do we have?
	Slide 48: What types of Expressions do we have?
	Slide 49: What types of Expressions do we have?
	Slide 50: What types of Expressions do we have?
	Slide 51: Definitions for ASTs
	Slide 52: Definitions for ASTs
	Slide 53: Definitions for ASTs
	Slide 54: AST Implementations
	Slide 55: AST Implementations
	Slide 56: PA2 Restrictions
	Slide 57: Quick note on AST Grammars
	Slide 58: AST Grammars
	Slide 59: AST Grammars
	Slide 60: AST Grammars
	Slide 61: AST Grammars
	Slide 62: AST Grammars
	Slide 63: AST Grammars
	Slide 64: AST Grammars
	Slide 65: AST Grammars
	Slide 66: AST Grammars
	Slide 67: AST creation is necessary but…
	Slide 68: AST creation is necessary but…
	Slide 69: AST Layout from PA2 Instructions
	Slide 70: PA2 Overview
	Slide 71: Step 1: Import
	Slide 72: Step 2: Study AST Implementations
	Slide 73: Step 2: AST Implementations
	Slide 74: Step 3: SourcePosition object
	Slide 75: SourcePosition for ASTs
	Slide 76: PA2 Overview
	Slide 77: Compiler.java Changes
	Slide 78: When no errors…
	Slide 79: Debugging
	Slide 80: Debugging (2)
	Slide 81: Example Output
	Slide 82: Example Output
	Slide 83: Parse Example (assume no precedence)
	Slide 84: Parse Example
	Slide 85: Parse Example
	Slide 86: Parse Example
	Slide 87: Parse Example
	Slide 88: Recommendations
	Slide 89: End
	Slide 90
	Slide 91
	Slide 92
	Slide 93

