
COMP 520 - Compilers

Lecture 06 – PA2 Intro
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PA1 Due 1/31 11:59pm

•Make sure to use office hours resources
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Quick Recap on LL(1)

•Consider the following: for every CFG rule, you do not 
know the sequence corresponding to that rule, but 
you DO know that the starters are disjoint. 

• Is it LL(1)?
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Quick Recap on LL(1)

•Consider the following: for every CFG rule, you do not 
know the sequence corresponding to that rule, but 
you DO know that the starters are disjoint.

• E.g., A ::= ?, B ::= ?, C ::= ?, and
∀𝑋,𝑌∈ 𝐴,𝐵,𝐶 Starters 𝑋 ∩ Starters 𝑌 = ∅

∨ (𝑋 = 𝑌)

• Is it LL(1)?
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Decisions.. decisions..

• The CFG rules are a decision, which is why it is 
important to know what terminals start a rule

•But inside the sequence, you also have decisions

•A ::= ba*Bb

•B ::= ac | 𝜀

• Is this LL(1)?
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Decisions.. decisions.. (2)

•A ::= ba*Bb

•B ::= ac | 𝜀

• Is this LL(1)?

• Formally, let’s check:

Predict(a) = Starters(a) = {a}

Predict(Bb) = Starters(Bb)⊕Followers(A)

= Starters(B)⊕Starters(b)
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Cool property, where did
Followers(A) disappear off to?
Hint: Starters(Bb) not nullable.



Decisions.. decisions.. (3)

• A ::= ba*Bb

• B ::= ac | 𝜀

• Is this LL(1)?

• Formally, let’s check:

Predict(a) = Starters(a) = {a}

Predict(Bb) = Starters(Bb)⊕Followers(A)

= Starters(B)⊕Starters(b)

= {a,𝜀} ⊕ {b} = {a,b}
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Not LL(1)



Sequences have decisions in them

• If we do not know where we are in the sequence
when only looking at the current Token, then how can 
we claim we are LL(1)?

•A ::= ba*Bb

•B ::= ac | 𝜀
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Followers Example

• Consider:

S ::= A$

A ::= BDA | a

B ::= D | b

D ::= d | 𝜀

First step: FL0(A) = (ST($) ∪ ST(𝜀)) \ {𝜀} = {$}

From the rule: 𝐹𝐿0 𝐴 = 𝐶⇒𝛼𝐴𝛽ڂ Starters 𝛽 \ {𝜀}

We see A is in the first and second rule.
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Followers Example

First step: FL0(A) = (ST($) ∪ ST(𝜀)) \ {𝜀} = {$}

From the rule: 𝐹𝐿0 𝐴 = 𝐶⇒𝛼𝐴𝛽ڂ Starters 𝛽 \ {𝜀}

We see A is in the first and second rule.

Second iteration: FL1(A) = FL0(A) ∪ FL0(A) = {$} ∪ {$} = {$}

From the rule: 𝐹𝐿𝑖+1 𝐴 = 𝐹𝐿𝑖 𝐴 ∪⋯∪ 𝐹𝐿𝑖 𝐶
• Where 𝐶 ⇒ 𝛼𝐴𝛽 and Nullable(𝛽)

We find every rule C where A is to the left of Nullable sequences.

This would be Rule 2, because A is to the left of nothing.
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S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀



Followers Example

First step: FL0(A) = (ST($) ∪ ST(𝜀)) \ {𝜀} = {$}

From the rule: 𝐹𝐿0 𝐴 = 𝐶⇒𝛼𝐴𝛽ڂ Starters 𝛽 \ {𝜀}

We see A is in the first and second rule.

Second iteration: FL1(A) = FL0(A) ∪ FL0(A) = {$} ∪ {$} = {$}

From the rule: 𝐹𝐿𝑖+1 𝐴 = 𝐹𝐿𝑖 𝐴 ∪⋯∪ 𝐹𝐿𝑖 𝐶
• Where 𝐶 ⇒ 𝛼𝐴𝛽 and Nullable(𝛽)

We find every rule C where A is to the left of Nullable sequences.

This would be Rule 2, because A is to the left of nothing.
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S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀



Final Followers Rule

• Followers(A) = {𝑡 | 𝑆 ⇒∗ 𝛼𝐴𝑡𝛽} ڂቊ
{𝜀}

{}
if 𝑆 ⇒∗ 𝛼𝐴
otherwise

• Don’t forget to union with {𝜀} when 𝑆 ⇒∗ 𝛼𝐴
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Fixed Point

• Although the previous example was simple, some problems will 
require you to iterate until you hit a fixed point.

• Let’s look at the Nullable inductive definitions
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Nullable Example

N0(S) = N(A$) = N(A) ∧ N($) = N(A) ∧ false = false

N0(A) = (N(B) ∧ N(D) ∧ N(A)) ∨ N(a) = N(B) ∧ N(D) ∧ N(A)

N0(B) = N(D) ∨ N(b) = N(D) ∨ false = N(D)

N0(D) = N(d) ∨ N(𝜀) = false ∨ true = true
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S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀

𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F

A ?

B ?

D T



Nullable Example (2)

N0(S) = N(A$) = N(A) ∧ N($) = N(A) ∧ false = false

N0(A) = (N(B) ∧ N(D) ∧ N(A)) ∨ N(a) = N(B) ∧ N(D) ∧ N(A)

N0(B) = N(D) ∨ N(b) = N(D) ∨ false = N(D)

N0(D) = N(d) ∨ N(𝜀) = false ∨ true = true

N1(B) = N0(D) = true

N1(A) = true ∧ true ∧ N(A) = N(A)
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S ::= A$
A ::= BDA | a
B ::= D | b
D ::= d | 𝜀

𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F

A ? ?

B ? T

D T T



If you see recursion…

• Ni A = Ni−1(A)

• A ::= BDA | a

• Try to rewrite this without recursion
if possible, otherwise continue iterating
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𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F

A ? ?

B ? T

D T T



If you see recursion… (2)

• Ni A = Ni−1(A)

• A ::= BDA | a

• Try to rewrite this without recursion

• A ::= (BD)*a

• N(A) = true ∧ N(a) = false
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𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F F

A ? ? F

B ? T T

D T T T



Nullable Example (3)
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𝐍𝟎 𝐍𝟏 𝐍𝟐 𝐍𝟑

S F F F F

A ? ? F F

B ? T T T

D T T T T

Fixed Point
at 𝐍𝟐 → 𝐍𝟑



From your feedback:

• I won’t ask for Predict sets in midterms/finals, but 
Nullable, Starters, and Followers is fair game

• Instead, Predict can be practiced in the first WA
(to be released on Thursday)
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PA2 – Intro
ASTs and Operator Precedence
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Recap of PA1
•Getting started may be difficult

• Syntax Analysis can be somewhat difficult, even for 
miniJava (imagine C++)

• It still feels like we are far from having a fully 
functional compiler … right?
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PA1
• You will be happy to know, you actually accomplished 

quite a bit of the compiler in PA1

•PA2 can be described as two things:

1. “Package syntax into data structures”

2. “Operator precedence”
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PA2 Expectations

• Learn about Abstract Syntax Trees
•Package the miniJava syntax into AST data structures
•Return one AST that encapsulates the entire program 

being compiled

•Data must be organized in a consistent manner, e.g., 
in a “Method List” data structure, methods appear in 
order as they appear in the source code

23
COMP 520: Compilers – S. Ali



PA2 Expectations

• Learn about Abstract Syntax Trees
•Package the miniJava syntax into AST data structures
•Return one AST that encapsulates the entire program 

being compiled

•Data must be organized in a consistent manner, e.g., 
in a “Method List” data structure, methods appear in 
order as they appear in the source code
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Abstract Syntax Trees
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Abstract Syntax Trees

• Recall the graph exercise for the CFG in Lec02, we will try to build a 
graph like that except for the input source file

• Only syntactically valid programs have an AST

• Building an AST is easier with an EBNF grammar rather than the 
original recursive CFG,

Where easier in this context just means less to write down, although 
some problems may also arise when generating the AST grammar.
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Abstract Syntax Trees

• Recall the graph exercise for the CFG in Lec02, we will try to build a 
graph like that except for the input source file

• Only syntactically valid programs have an AST

• Building an AST is easier with an EBNF grammar rather than the 
original recursive CFG,

Where easier in this context just means less to write down, although 
some problems may also arise when generating the AST grammar.
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AST Example

•Consider the CFG:

• S ::= E $

• E ::= E Op T | T

• T ::= ( E ) | num

•Op ::= + | *
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What is the EBNF of this?



CFG -> EBNF

CFG

• S ::= E $

• E ::= E Op T | T

• T ::= ( E ) | num

•Op ::= + | *

EBNF

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

•Op ::= + | *
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EBNF AST

•Now that we have the grammar in the much easier 
EBNF, we can construct an AST.

•An AST is a graph that describes the structure of your 
input source code.
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AST Construction
Let’s construct the syntax tree for 2 + ( 3 * 4 ) $

Apply: S ::= E $, Left: E=2 + (3 * 4), Right: $
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *



AST Construction
Let’s construct the syntax tree for 2 + ( 3 * 4 ) $

Apply: E ::= T Op T, Left: E=2, Op=+, Right: T=( 3 * 4 )
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp +



AST Construction
Let’s construct the syntax tree for 2 + ( 3 * 4 ) $

Apply: T ::= num
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp +

2



AST Construction
Let’s construct the syntax tree for 2 + ( 3 * 4 ) $
Apply: T ::= ( E ), Left: (, Middle: E=3*4, Right: )

34
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp +

( )E2



AST Construction
Let’s construct the syntax tree for 2 + ( 3 * 4 ) $

Apply: E ::= T Op T, Left: T=3, Middle: Op=*, Right: T=4
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp +

( )E

T TOp *

2



AST Construction
Let’s construct the syntax tree for 2 + ( 3 * 4 ) $

Apply: T ::= num
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp +

( )E

T TOp *

3 4

2



What if we used the CFG?

37
COMP 520: Compilers – S. Ali



Without EBNF
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S ::= E $
E ::= E Op T | T
T ::= ( E ) | num
Op ::= + | *

Let’s construct the syntax tree for 2 + ( 3 * 4 ) $
Tree is lengthier, and can get quite messy

S

E $

E TOp +

( )E

E TOp *

3
4

T

2

T



A quick look at math in 
expressions
More on this in Thursday’s lecture (Lec07)
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Any problems with this AST?
Input: 20 + 5 * 100 $
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp *

T TOp + 100

20 5



Any problems with this AST?
Input: 20 + 5 * 100 $
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp *

T TOp + 100

20 5

Emulate Execution
20 + 5 = 25



Any problems with this AST?
Input: 20 + 5 * 100 $
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S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

T TOp *

25 100
Emulate Execution
20 + 5 = 25
25 * 100 = 2500



Any problems with this AST?
Input: 20 + 5 * 100 $

43
COMP 520: Compilers – S. Ali

S

E $

S ::= E $
E ::= T (Op T)*
T ::= ( E ) | num
Op ::= + | *

2500

Emulate Execution
20 + 5 = 25
25 * 100 = 2500



But that isn’t correct!

•20 + 5 * 100 is not 2500

•Precedence rules must be enforced for the correct 
AST to be generated.

• This can be tricky, but we can modify our grammar to 
make this quite easy (next lecture)
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Abstractness of ASTs
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What types of Expressions do we have?

• Consider: UnaryExpr, BinaryExpr, CallExpr, IxExpr, RefExpr, LiteralExpr, 
NewArrayExpr, NewObjectExpr

• All of these are an “Expression”

• So this rule: Expression Op Expression ≡ BinaryExpr

• But each of those Expressions can be any other type of Expression.
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What types of Expressions do we have?

• Consider: UnaryExpr, BinaryExpr, CallExpr, IxExpr, RefExpr, LiteralExpr, 
NewArrayExpr, NewObjectExpr

• So this rule: Expression Op Expression ≡ BinaryExpr

• Is this a syntactically valid expression?

-3 + new A()
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What types of Expressions do we have?

• Consider: UnaryExpr, BinaryExpr, CallExpr, IxExpr, RefExpr, LiteralExpr, 
NewArrayExpr, NewObjectExpr

• So this rule: Expression Op Expression ≡ BinaryExpr

• Is this a syntactically valid expression?

-3 + new A()

• Yes, but the types do not match, however for PA2, perfectly fine
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What types of Expressions do we have?

• Is this a syntactically valid statement?

boolean A = -3 + new A();
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What types of Expressions do we have?

• Is this a syntactically valid statement?

boolean A = -3 + new A();

• Yes, but the types do not match, and A makes no sense in its context.

• Still perfectly fine for PA2
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Definitions for ASTs
• Consider WhileStmt ::= while ( Expression ) Statement

• We want to capture this in a data structure, so we create the class 
WhileStmt which extends Statement
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Definitions for ASTs
• Consider WhileStmt ::= while ( Expression ) Statement

• We want to capture this in a data structure, so we create the class 
WhileStmt which extends Statement

if( currentToken.getType() == TokenType.While ) {

• accept( while ); accept( ‘(‘ );

• Expression e = parseExpression();

• accept( ‘)’ );

• Statement s = parseStatement();
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Definitions for ASTs
• Consider WhileStmt ::= while ( Expression ) Statement

• We want to capture this in a data structure, so we create the class 
WhileStmt which extends Statement

if( currentToken.getType() == TokenType.While ) {

• accept( while ); accept( ‘(‘ );

• Expression e = parseExpression();

• accept( ‘)’ );

• Statement s = parseStatement();

• return new WhileStmt( e, s );
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AST Implementations

• The class definitions for ASTs are quite mundane and 
likely what you expect them to be.

• E.g., TypeDenoter is the abstract type for “Type” and 
parseType can return ArrayType, BaseType, 
ClassType, each of which extend TypeDenoter
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AST Implementations

• The class definitions for ASTs are quite mundane and 
likely what you expect them to be.
• E.g., TypeDenoter is the abstract type for “Type” and 
parseType can return ArrayType, BaseType, 
ClassType, each of which extend TypeDenoter

•As such, all ASTs are already implemented and 
available on the course website.
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PA2 Restrictions

• You must use the AST implementations available on 
the course website.

• The autograder checks to make sure your AST is 
constructed correctly and in the proper order.
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Quick note on AST Grammars
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AST Grammars

Consider the grammar:

• S ::= E

• E ::= T (Op T)*

• T ::= ( E ) | num

• We want to parse Expressions, 
so create a rule:

• S ::= E

• For simplicity, add the $ terminal

• S ::= E $
• (See augmented grammars, worth 

a google or check the textbook)
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AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

• First let’s denote “E” as an 
“Expression” as that is the 
symbol in our start state

• What are the types of 
expressions we can encounter?
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AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

• First let’s denote “E” as an 
“Expression” as that is the 
symbol in our start state

• What are the types of 
expressions we can encounter?

• Locate all instances of E and any 
non-terminal it encompasses
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AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

Locate all instances of E and any 
non-terminal it encompasses

• T, and T Op T

Non-terminal T, so we also have

• ( E ) and num
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AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

Looks like we have three types of 
expressions:

Just “T”, so:

T ቊ
( E )
num

T Op T
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AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

T ቊ
( E )
num

T Op T

( E ) is just an Expression that is 
later resolved, so this isn’t unique.
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AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

Thus, we have two types of 
expressions:

T Op T

num
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AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

Thus, we have two types of 
expressions:

Define them!
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T Op T BinExpr

num LiteralExpr



AST Grammars

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

Generate AST Grammars:

• Expr ::= Expr Op Expr   (BinExpr)

| num (NumExpr)

Each option has its own AST 
definition, where options have an “is 
a” relationship with the parent type.

“NumExpr” is a “Expr”
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AST creation is necessary but…

• Generating the theory for what should be in the AST 
grammars? Exciting, even if it is just “find the options.”

• Writing the code for every single AST object with the proper 
“is a” relationship? Well…
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AST creation is necessary but…

• Generating the theory for what should be in the AST 
grammars? Exciting, even if it is just “find the options.”

• Writing the code for every single AST object with the proper 
“is a” relationship? Well…

• We’re just going to give you the code for AST objects
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AST Layout from PA2 Instructions
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Note: What is provided on the right
is subject to clarification updates.

Always check Piazza for updates,
and grab the latest PA2 instructions
from the course website.



PA2 Overview
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Step 1: Import

•Create a package called miniJava.AbstractSyntaxTrees

•Download the zip file on the course website, and 
import all source files into the package
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Step 2: Study AST Implementations
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Step 2: AST Implementations

•Package AST has an add method, and accepts 
ClassDecl to build a list of classes.

• Your parse method should return the Package AST.
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Step 3: SourcePosition object

• See PA2 instructions for more details

• When debugging your code, you can enable source 
positions, but if you are not tracking source positions for 
your Tokens, then pass null whenever an AST requires a 
SourcePosition object.

• If you already are tracking positions, then package that 
data into the SourcePosition object as outlined in the 
instructions.
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SourcePosition for ASTs

• Syntax doesn’t occur at a single location, so what is a good 
way to implement SourcePosition?

• Up to you, but we recommend SourcePosition being 
overloaded with two constructors, one with just a line/col 
number, and another with a StartToken and EndToken, and 
the toString output would show the range over which lines 
the current syntax spans.

• Recall: This is a PA5 extra credit item
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PA2 Overview

• Go through each of your parse methods and return the AST 
associated with that syntax.

• For example, parseExpression returns the generic Expression AST, but 
if the current token is “true|false”, then it returns:

new LiteralExpr(new BooleanLiteral( theToken ), theToken.position )

• Where LiteralExpr “is an” Expression
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Compiler.java Changes

•As before, output “Error” on its own line (println) if 
there is a syntax error, then any meaningful error 
messages you like

• If there are no errors, then…
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When no errors…

• If there are no errors, ensure there is no other 
output other than the one generated from 
display.showTree
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Debugging

• If your compiler is not passing a test, download “Gradescope
Tests” on the course website for PA2, then find the 
associated test.

• Note: “pass119.java” is the input source file, and 
“pass119.java.out” is the AST display that should be 
generated.

• If there is an error, find the difference in your display versus 
the .out file
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Debugging (2)

• If you need to know where in the source code something 
went wrong and you have implemented SourcePosition, 
then go to ASTDisplay.java and set the “showPosition” 
variable to true.

• NOTE: Only submit your assignment with showPosition set to 
false, otherwise the autograder will be unable to check your 
Compiler’s output for valid input files.
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Example Output

class id {}
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Example Output
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Parse Example (assume no precedence)

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

Can anyone give me the parse 
method for parseS() if it was PA1?

Then, we will add ASTs!
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Parse Example

Consider the grammar:

• S ::= E $

• E ::= T (Op T)*

• T ::= ( E ) | num

Generate AST Grammars:

• Expr ::= Expr Op Expr   (BinExpr)

| num (NumExpr)
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Parse Example

Consider the grammar:
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Recommendations

•Work on operator precedence last, because 
everything else in the Parser is only slightly modified

• (Your implementation may require larger 
modifications, but hopefully nothing crazy)

•We will make operator precedence very easy in 
Thursday’s lecture
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End
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